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Constrained Multiple-Swarm Particle Swarm
Optimization Within a Cultural Framework
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Abstract—Particle swarm optimization (PSO) has been recently
adopted to solve constrained optimization problems. In this paper,
a cultural-based constrained PSO is proposed to incorporate the
information of the objective function and constraint violation into
four sections of the belief space, specifically normative knowledge,
spatial knowledge, situational knowledge, and temporal knowl-
edge. The archived information facilitates communication among
swarms in the population space and assists in selecting the leading
particles in three different levels: personal, swarm, and global
levels. Comprehensive comparison of the proposed heuristics over
a number of benchmark problems with selected state-of-the-art
constraint-handling techniques demonstrates that the proposed
cultural framework helps the multiple-swarm PSO to perform
competitively with respect to selected designs.

Index Terms—Constrained optimization, constrained particle
swarm optimization (CPSO), cultural algorithm (CA), PSO.

I. INTRODUCTION

POPULATION-BASED paradigms to solve constrained op-
timization problems have attracted much attention during

the most recent years. Genetic-based algorithms and swarm-
based paradigms are two popular population-based heuristics
introduced for solving constrained optimization problems [1]–
[3]. Particle swarm optimization (PSO) [4]–[10] is a swarm in-
telligence design based upon mimicking the behavior of social
species such as flocking birds, schooling fish, swarming wasps,
and so forth. Constrained PSO (CPSO) is a relatively new
approach to tackle constrained optimization problems [11]–
[24]. What constitute the challenges of constrained optimiza-
tion problems are various limits on decision variables, the types
of constraints involved, the interference among constraints, and
the interrelationship between the constraints and the objective
functions. In general, constrained optimization problems can be
formulated as

Optimize f(x) = f(x1, x2, . . . , xn) (1)

subject to inequality constraints

gk(x) ≤ 0, k = 1, 2, . . . , L (2)
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and equality constraints

hk(x) = 0, k = L+ 1, . . . ,m. (3)

We should note that, in this paper, minimization problems
are considered without loss of generality (due to duality prin-
ciple). Individuals that satisfy all of the constraints are called
feasible individuals, while individuals that do not satisfy at least
one of the constraints are called infeasible individuals. Active
constraints are defined as inequality constraints that satisfy
gk(x) ≤ 0 (k = 1, 2, . . . , L) at the global optimum solution,
so all equality constraints, i.e., hk(x) = 0 (k = L+ 1, . . . ,m),
are active constraints.

Although there are a few research works on PSO proposed
to solve constrained optimization problems, none of these
studies fully explores the information from all particles in
order to perform communication within PSO. Therefore, due
to lack of communication, the particles will not be able to act
synchronously. When particles share their information through
communication with each other, they will be able to efficiently
handle the constraints and optimize the objective function. In
order to construct the environment needed to share information,
we need to build the groundwork to enable us to employ this
information as needed. In this paper, the foundation is the belief
space under cultural framework [25], [26]. Cultural algorithm
(CA) has alone shown its own ability to solve engineering
problems [26]–[42], particularly some constrained optimization
ones [36], [39]–[41]. The information-sharing process can be
improved by migration of data within swarms.

From a sociological point of view, a study has shown that
human societies will migrate from one place to another in order
to counter their own life constraints and limitations as well
as to reach a better economical, social, or political life [43].
People living in different societies migrate in spite of the dif-
ferent value systems and cultural distinctions. Indeed, cultural
belief is an important factor affecting the issues underlying the
migration phenomena [44]. As CA is one of the newly emerging
nature-inspired computational paradigms, the inspiration from
sociology and migration analogy places the proposed design in
perspective.

On the other hand, information sharing will effectively re-
duce the computational complexity. Indeed, finding the appro-
priate information for communication within swarms can be
computationally expensive if it is not performed in a systematic
and categorical manner. One computational aspect is the diffi-
culties of finding the appropriate information to communicate
within PSO in order to be able to simultaneously handle the
constraints and optimize the objective function. Using many
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concepts inspired from CA, such as normative knowledge,
situational knowledge, spatial knowledge, and temporal knowl-
edge, we will be able to efficiently and effectively organize the
knowledge acquired from the evolutionary process to facilitate
PSO’s updating mechanism as well as swarm communications.
The interswarm communication for the constrained optimiza-
tion problems using PSO is an important duty that cannot be
solved unless we have access to the knowledge throughout the
search process, given CA as the computational framework.

In this paper, we have proposed a computational framework
based on CA adopting the knowledge stored in the belief
space in order to assist the interswarm communication, to
search for the leading particles in the personal, swarm, and
global levels. Every particle in CPSO will fly through a three-
level flight. Then, particles cluster into several swarms, and
interswarm communication takes place to share the informa-
tion. The remaining sections complete the presentation of this
paper as follows. In Section II, we briefly review principles
of CA and related works in CPSO performed in this area.
In Section III, the proposed cultural CPSO is elaborated. In
Section IV, simulation results are evaluated on the benchmark
test problems in comparison with the state-of-the-art constraint-
handling models. Finally, Section V summarizes the concluding
remarks and future directions of this paper.

II. LITERATURE SURVEY

A. Related Works in Constrained PSO

Relevant works of CPSO algorithms are briefly reviewed
in this subsection to motivate the proposed ideas. PSO [4]–
[10] has shown its promise to solve constrained optimization
problems. Hu and Eberhart simply generated particles in PSO
for constrained optimization problems until they are located in
the feasible region and then used these particles in the feasible
region for finding the best personal and global particles [11].
Parsopoulos and Vrahatis used a dynamic multistage penalty
function for constraint handling [12]. The penalty function is
the weighted sum of all constraint violations, with each con-
straint having a dynamic exponent and a multistage dynamic
coefficient. Coath and Halgamuge presented a comparison of
two constraint-handling methods based upon preserving feasi-
ble solutions [11] and dynamic penalty function [12] to solve
constrained nonlinear optimization problems using PSO [13].
It demonstrated that the convergence rate for penalty-function-
based PSO was faster than that of the feasible solution method.

Paquet and Engelbrecht proposed a modified PSO to solve
linearly constrained optimization problems [14]. An essential
characteristic of their modified PSO is that the movement of
the particles in the vector space is mathematically guaranteed
by the velocity and position update mechanism of PSO. They
proved that their modified PSO is always assured to find at least
a local optimum for linearly constrained optimization problems.
Takahama and Sakai, in their �-constrained PSO, proposed an
algorithm in which particles that satisfy the constraints move to
optimize the objective function while particles that violate the
constraints progress to satisfy the constraints [15]. In order to
adaptively control the maximum velocity of particles, particles

are divided into some groups, and their movement in those
groups is compared.

Krohling and Coelho adopted Gaussian distribution instead
of uniform distribution for the personal- and global-term ran-
dom weights of the PSO mechanism to solve constrained
optimization problems formulated as min–max problems [16].
They used two populations simultaneously. First, PSO focuses
on evolving the variable vector while the vector of Lagrangian
multiplier is kept frozen, and the second PSO is to concentrate
on evolving the Lagrangian multiplier while the first population
is stayed frozen. The use of normal distribution for the stochas-
tic parameters of PSO seems to provide a good compromise
between the probability of having a large number of small
amplitudes around the current points and the small probability
of having large amplitudes, which may cause particles to move
away from the current points and escape from the local optima.

Yang et al. [17] proposed a master–slave PSO in which the
master swarm is responsible for optimizing the objective func-
tion while the slave swarm is focused on constraint feasibility.
Particles in the master swarm only fly toward the current better
particles in the feasible region. The slave swarm is respon-
sible for searching feasible particles by scouting through the
infeasible region. The feasible/infeasible leaders from a swarm
will then communicate to lead the other swarm. By exchanging
flight information between swarms, the algorithm can explore a
wider solution space.

Zheng et al. [18] adopted an approach that congregates the
neighboring particles in PSO to form multiple swarms in order
to explore an isolated, long, and narrow feasible space. They
also applied a mutation operator with dynamic mutation rate
to encourage flight of particles to the feasible region more
frequently. For constraint handling, a penalty function has been
adopted as to how far the infeasible particle is located from
the feasible region. Saber et al. [19] introduced a version of
PSO for constrained optimization problems. In their version of
PSO, the velocity update mechanism uses a sufficient number of
promising vectors to reduce randomness for better convergence.
The velocity coefficient in the positional update equation is a
dynamic rate depending on the error and iteration. They also
reinitialized the idle particles if there are not improving for
some iterations.

Li et al. [20] proposed dual PSO with stochastic ranking
to handle the constraints. One regular PSO evolves simulta-
neously along with a genetic PSO which is a discrete version
of PSO including a reproduction operator. The better of the
two positions generated by these two PSOs is then selected
as the updated position. Flores-Mendoza and Mezura-Montes
[21] used the Pareto dominance concept for constraint handling
on a biobjective space, with one objective being the sum of
inequality constraint violations and the second objective being
the sum of equality constraint violations, in order to promote
a better approach to the feasible region. They also adopted a
decaying parameter to control the constriction factor and global
acceleration of PSO to prevent premature convergence and to
advance the exploration of the search space. Ting et al. [22]
introduced a hybrid heuristic consisting of PSO and genetic
algorithm to tackle the constraint optimization problem of load
flow problems. They adopted two-point crossover, mutation,



DANESHYARI AND YEN: CONSTRAINED MULTIPLE-SWARM PSO WITHIN A CULTURAL FRAMEWORK 477

and roulette-wheel selection from genetic algorithms along
with the regular PSO to generate the new population space.
Liu et al. [23] incorporated discrete genetic PSO with differ-
ential evolution (DE) to enhance the search process in which
both genetic PSO and DE update the position of the individual
at every generation. The better position will then be selected.

Yen and Leong [24] embedded the constraint-handling tech-
niques into the flight mechanism of PSO, including separate
procedures to update the infeasible and feasible personal bests
in order to guide the infeasible individuals toward the feasi-
ble regions while promoting the search for optimal solutions.
Additionally, storing infeasible nondominated solutions along
with the best feasible solutions in the global best archive is to
assist the search for feasible regions and a better solution. The
adjustment of accelerated constants is based on the number of
feasible personal bests and the constraint violations of personal
bests and global best. The simulation study shows that the
proposed design is able to obtain a quality solution in a very
efficient manner.

In the context of information sharing, all existing algorithms
are short of a data feedback process which we have solved in
our proposed algorithm by adopting a cultural framework. In
the proposed algorithm, the population and belief spaces will
communicate through feedbacklike communication channels.
This feedbacklike procedure will increase the efficiency and
effectiveness of the PSO mechanism in the search process.

B. Related Work in CA on Constrained Optimization

For the completeness of the presentation, the basic principle
of CA is briefly outlined hereinafter. CA, which is originated
by Reynolds [25], [26], is a dual-inheritance system where
information exists at two different spaces, namely, population
and belief spaces, and can pass along to the next generation.
CA, an adaptive evolutionary computation method derived from
cultural evolution, consists of evolving agents whose experi-
ences are gathered into the belief space consisting of various
forms of symbolic knowledge. CA has shown its ability to solve
different types of problems [26]–[42].

Researchers have identified five basic sections of knowl-
edge stored in the belief space based upon the literature in
cognitive science and semiotics: situational knowledge, nor-
mative knowledge, spatial or topographical knowledge [29],
domain knowledge, and temporal or history knowledge [34].
Situational knowledge is a set of exemplary individuals use-
ful for experiences of all individuals. Situational knowledge
guides all individuals to move toward the exemplar individuals.
Normative knowledge consists of a set of promising ranges.
Normative knowledge provides a standard guiding principle
within which individual adjustments can be made. Individuals
jump into the good range using normative knowledge. Topo-
graphical knowledge keeps track of the best individuals found
so far in the promising region. Topographical knowledge leads
all individuals toward the best performing areas in the search
space. Domain knowledge incorporates information from the
problem domain to lead the search. Domain knowledge about
landscape contour and its related parameters guides the search
process. History knowledge keeps track of the history of the

search process and records key events in the search. It might
be either a considerable move in the search space or a dis-
covery of landscape change. Individuals use history knowledge
for guidance in selecting a move direction. Domain knowl-
edge and history knowledge are useful on dynamic landscape
problems [45].

Becerra and Coello Coello proposed a cultured DE for
constrained optimization [35]. The population space in their
study was DE, while the belief space consisted of situational,
topographical, normative, and history knowledge. The variation
operator in DE was influenced by the knowledge source of
the belief space. Yuan et al. introduced chaotic hybrid CA for
constrained optimization in which the population space was
DE and the belief space included normative and situational
knowledge [40]. They incorporated a logistic map function for
better convergence of DE. Tang and Li proposed a cultured
genetic algorithm for constrained optimization problems by
introducing a triple-space CA [41]. The triple space includes
belief and population spaces in addition to an anticulture popu-
lation consisting of individuals disobeying the guidance of the
belief space and going away from the belief-space-guided in-
dividuals. The effect of disobeying enhanced by some mutation
operations appreciably makes the algorithm faster and less risky
for premature convergence by awarding the most successful
individuals and punishing the unsuccessful population. Zhao
and Gao [42] introduced a cultural-based PSO to design a
low-pass finite-impulse response digital filter. The key idea
behind their algorithm is to acquire problem-solving knowledge
(i.e., beliefs) from the evolving population and, in turn, use
that knowledge to guide the evolution process. They adopt
the structure of CA including belief space, acceptance, and
influence functions along with particle swarm for designing the
filter.

III. CULTURAL CONSTRAINED OPTIMIZATION

USING MULTIPLE-SWARM PSO

The pseudocode of the proposed design is shown in Fig. 1,
and the block diagram depicting the operations of the pro-
posed algorithm is also shown in Fig. 2, which is based upon
the general structure of CA consisting of two spaces (belief
and population spaces) and communication channels (influence
function from belief space to population space and acceptance
function from population space to belief space). The population
space (PSO) will be initialized and then clustered into several
swarms based upon the proximity of the particles in the decision
space. The correspondent belief space (BLF) will then be ini-
tialized. We evaluate the population space using fitness values.
Acceptance function is applied to select particles, which will
be used for the belief space. The belief space consists of four
sections: normative, spatial (topographical), situational, and
temporal (history) knowledge. This cultural framework plays
a key role in the algorithm. Influence function is then applied to
the belief space to adjust the key parameters of PSO for the next
iteration, i.e., personal best, swarm best, and global best. After
a predefined iteration, influence function manipulates the belief
space to perform communication among swarms, which is done
by preparing two sets of particles for each swarm to share with
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Fig. 1. Pseudocode of the cultural constrained optimization using multiple-
swarm PSO.

Fig. 2. Schema of the cultural framework adopted, where belief space con-
sists of normative, spatial (topographical), situational, and temporal (history)
knowledge, and population space is a multiple-swarm PSO.

the other swarms. Afterward, particles in the population space
fly using newly computed personal, swarm, and global best.
This process continues until the stopping criteria are met.

In the remainder of this section, we explain the multiswarm
population space, acceptance function, different parts of be-
lief space, influence functions, and interswarm communication
strategy, respectively.

A. Multiswarm Population Space

The population space in this paper consists of multiple
swarms, with each swarm performing a PSO paradigm. The
particles are clustered into a predefined number of swarms
using k-means clustering in the decision space. In this paper, the
number of swarms, P , is chosen roughly 10% of the population
size, N

P = �0.1N� (4)

where �·� refers to a rounding operator. This multiple-swarm
PSO is a modified version of the algorithm introduced by
Yen and Daneshyari [46], [47]. To overcome the premature
convergence problem of PSO and to promote the particles in
a swarm sharing information among themselves, a three-level
flight for a PSO mechanism has been adopted. In the personal

level, the particle will follow its best experienced behavior in
its history. In the swarm level, the particle will simultaneously
follow the best behaving particle in its swarm to achieve a
synchronal behavior among the neighboring particles. Finally,
in the global level, the entire population will follow the best
known particle seeking a global goal. This modified paradigm
of PSO is formulated as

vdi (t+ 1) =wvdi (t) + c1r1
(
pbestdi (t)− xd

i (t)
)

+ c2r2
(
sbestdi,j(t)− xd

i (t)
)

+ c3r3
(
gbestd(t)− xd

i (t)
)

xd
i (t+ 1) =xd

i (t) + vdi (t+ 1) (5)

where vdi (t) is the dth dimension of the velocity of the ith
particle at time t; xd

i (t) is the dth dimension of the position
of the ith particle at time t; pbestdi (t) is the dth dimension of
the best past position of the ith particle at time t; sbestdi,j(t) is
the dth dimension of the best particle from swarm j in which
particle i belongs; gbestd(t) is the dth dimension of the best
particle of a population at time t; r1, r2, and r3 are uniformly
generated random numbers in the range of (0, 1); c1, c2, and c3
are constant parameters representing the weights for personal,
swarm, and global behaviors; and w is the momentum for the
previous velocity.

B. Acceptance Function

The belief space should be affected by a selection of best
individuals. Therefore, we select all particles which are located
in the feasible space, and also p% of the infeasible particles that
have the least violation of constraints, where p is a predefined
value. This allows the infeasible individuals with minimum
constraint violations to portray feasibility landscape.

C. Belief Space

The belief space in this paradigm consists of four sections:
normative, spatial, situational, and temporal knowledge. Since
the constrained optimization problems of our interest have
static landscapes, we only implement these four sections be-
cause domain knowledge, the fifth element, is mainly useful
when fitness landscape is dynamic. We will briefly explain the
type of information, the way to represent the knowledge, and
how to update the knowledge for each section of the belief
space.

1) Normative Knowledge: Normative knowledge represents
the best area with respect to the objective function values. It is
represented as Fig. 3(a), where f(t) = [f1(t)f2(t) . . . fN (t)] and
V (t) = [v1(t)v2(t) . . . vN (t)] (N is the number of particles).
fj(t) is a normalized objective function defined as follows:

fj(t) =
f(xj)− fmin

j (t)

fmax
j (t)− fmin

j (t)
, j = 1, 2, . . . , N (6)

where f(xj) is the objective function value for particle xj ,
fmin
j (t) = minx∈X(f(xj)) is the lower bound of the ob-

jective function value on the jth particle at time t, and
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Fig. 3. Representation of (a) normative knowledge, (b) spatial knowledge,
(c) situational knowledge, and (d) temporal knowledge.

fmax
j (t) = maxx∈X(f(xj)) is the upper bound of the objective

function value on the jth particle at time t. X is referred to as
the current population at time t. At every iteration, the lower
and upper bounds will be calculated in the algorithm based
upon the current population. They vary by iteration and are not
fixed. In (6), the range of objective function values had been
normalized. The reason for the normalization is that, throughout
the algorithm, we do not deal with scaling. For cases with large
values of fmax

j (t), the algorithm still works properly, because
fmax
j (t) and fmin

j (t) come from the current population (not
some fixed values), so the value of f(xj)− fmin

j (t) in the
numerator of (6) will not be statistically very small compared to
the denominator fmax

j (t)− fmin
j (t). As a result, fj(t) will still

be a proper measure to handle objective functions with very
large maximum values.
vj(t) is a measure of violation of all constraints for particle

xj , which is defined as follows:

vj(t) =
1

m

m∑
k=1

ck(xj)

cmax
k

, j = 1, 2, . . . , N (7)

where m is the number of constraints and ck(xj) is related to
the kth constraint violation evaluated at particle xj as follows:

ck(xj) =

{
max (0, gk(xj)) , k = 1, 2, . . . , L
max (0, |hk(xj)| − δ) , k = L+ 1, . . . ,m

(8)

cmax
k = maxx∈X (ck(xj)) . (9)

In order to update normative knowledge, new objective function
values will be normalized using (6), and constraint violation
measures will be updated by the new position of the particles
using (7). The information in normative knowledge is used to
assemble the framework for spatial knowledge.

2) Spatial Knowledge: In order to represent spatial or to-
pographical knowledge, we adopt normative knowledge. The
method adopted in this section is similar to the penalty func-
tion method to handle constraints introduced by Tessema and
Yen [48]. The normalized objective functions, f , and viola-
tion measures, V, are set as the axes of a 2-D space, as
shown in Fig. 4. Two particles are mapped in this space for
visualization. Fig. 3(b) shows the spatial knowledge stored
for every particle located in the f−V space where D(t) =
[D1(t)D2(t) . . . DN (t)] and F(t) = [F1(t)F2(t) . . .FN (t)]

(N is the number of particles). Dj(t) is the Euclidean distance
from the origin of the f−V space, which is defined as

Dj(t) =
(
vj(t)

2 + fj(t)
2
)1/2

, j = 1, 2, . . . , N (10)

and Fj is the modified objective function value to handle
constraints computed as a weighted sum of three spatial dis-
tances D, v, and f , i.e.,

Fj(t) =

⎧⎪⎨
⎪⎩

Dj(t) + (1− r(t)) vj(t)
+r(t)fj(t), r(t) �= 0,xj infeasile

vj(t), r(t) = 0,xj infeasile
fj(t), xj feasile,

j = 1, 2, . . . , N (11)

where r(t) is the ratio of the number of feasible particles
over the population size, and fj(t) and vj(t) are defined in
(6) and (7), respectively. If 0 � r(t) < 1, then vj(t) will be
more important than fj(t) in (11); consequently, F1(t) > F2(t)
in the schema shown in Fig. 4, which means that particle 2
outperforms particle 1 for a minimization problem. However,
if 0 < r(t) � 1, then fj(t) will be more important than vj(t)
in (11); consequently, F1(t) < F2(t) shown in Fig. 4, which
implies that particle 1 outperforms particle 2. For the sake of
completeness and to demonstrate that the modified objective
function works well, we will elaborate all possible cases.

1) In case 1 of (11), i.e., r(t) �= 0 and infeasible particle,
there is at least one feasible particle. In this case, the
modified objective function for the infeasible particle is
formulated. It should incorporate both the violation factor
and the normalized objective value. For the following two
infeasible particles:
a) If r (percentage of feasible particles) is too large, then

objective function is more important than constraint
violation in computing the modified objective value.
The particle with the higher (worse in the minimiza-
tion problem) objective function will have a higher
(worse) modified objective value.

b) If r is too small, then constraint violation is more
important than objective function value. The particle
with the higher constraint violation will have a higher
(worse) modified objective value.

2) In case 2 of (11), i.e., r(t) = 0 and infeasible particle,
there is no feasible particle. Therefore, the only important
factor will be constraint violation. The particle with the
higher constraint violation will have a higher (worse)
modified objective value.

3) In case 3 of (11), i.e., feasible particles, there is at
least one feasible particle. For two feasible particles, the
constraint violation factor does not play a role, and only
the objective function value is important. The particle
with the higher objective function value will have a higher
(worse) modified objective value.

4) When comparing two particles, i.e., one feasible and
another infeasible, we should adopt cases 1 and 3 (since
there is at least one feasible particle, r cannot be zero). In
this comparison, using the geometrical graphs in Fig. 4,
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Fig. 4. Schema to represent how spatial knowledge is computed.

it can be observed that always the infeasible particle will
have a higher (worse) modified objective value.

5) There is no comparison between cases 2 and 3. In addi-
tion, there will be no comparison between cases 1 and 2,
because case 2 is when there is no feasible particle at all,
and case 1 or 3 is when there exists at least one feasible
particle.

At every iteration, spatial knowledge will be updated. To do
so, the updated normative knowledge will be used to rebuild the
spatial distance for every particle using (10) and (11). Spatial
knowledge will be used later to find the global best particle
in the population space and to build a communication strategy
among swarms.

3) Situational Knowledge: This part of the belief space is
used to keep the good exemplar particles for each swarm. Its
representation is shown in Fig. 3(c). X̂i(t) [i = 1, 2, . . . , P ,
where P is the number of swarms defined in (4)] is the best
particle in the ith swarm based upon the information received
from spatial knowledge in accordance with both objective
function value and constraint violation. Assume that at an
arbitrary iteration, the ith swarm consists of Ni particles as
Ωi = {z1, z2, . . . , zNi

} and that F = {F1,F2, . . . ,FNi
} is a

set consisting of the modified objective values extracted from
spatial knowledge corresponding to z1, z2, . . . , zNi

. X̂i(t) ∈
Ωi is defined such that

F
(
X̂i(t)

)
= min1<l<Ni

Fl, i = 1, 2, . . . , P (12)

where F(X̂i(t)) is the modified objective function value for the
particle X̂i(t). In order to update situational knowledge, the up-
dated position of the particles will be used to evaluate (6)–(11)
to compute the updated modified objective function values, and
then, the particle corresponding to the least value in each swarm
will be stored in situational knowledge. Situational knowledge
will be used later to compute the swarm best particles and to
facilitate communication among swarms.

4) Temporal Knowledge: This part of the belief
space is used to keep the history of the individual’s
behavior. Its representation is shown in Fig. 3(d),
where T (t) = {T1(t), T2(t), . . . , TN (t)} and P(t) =
{P1(t),P2(t), . . . ,PN (t)} (N is the number of particles
in the population space). Tj(t) is a set of past and current
temporal patterns of the jth particle, which are collected at

every time step from part of spatial knowledge, Fj(t), and is
defined as follows:

Tj(t)={Fj(1),Fj(2), . . . ,Fj(t)} , j = 1, 2, . . . , N (13)

where Fj(1), Fj(2), . . . , Fj(t) are the modified objective func-
tion values defined in (11) for time steps 1, 2, . . . t, respectively.
Pj(t) is a set of all past and current positions of the jth
particle in the whole population, which is defined as Pj(t) =
{xj(1),xj(2), . . . ,xj(t)}, j = 1, 2, . . . , N . Temporal knowl-
edge will be updated at every iteration. To do so, the updated
spatial knowledge, the updated position of the particle, and
the previously stored temporal knowledge will be adopted as
follows:

Tj(t+ 1) = Tj(t) ∪ {Fj(t+ 1)} , j = 1, 2, . . . , N

Pj(t+ 1) =Pj(t) ∪ {xj(t+ 1)} , j = 1, 2, . . . , N.

(14)

Temporal knowledge will later be used to compute the per-
sonal best for every particle in the population space.

D. Influence Functions

After the belief space is updated, correspondent knowledge
should be used to influence the flight of particles in PSO. We
propose to use the knowledge in the belief space to select the
personal best, swarm best, and global best for the PSO flight
mechanism. Furthermore, we propose to adopt the information
in the belief space to perform a communication strategy among
swarms.

1) pbest Selection: In order to select the personal best,
we exploit the information in the temporal knowledge section
of the belief space. The best behaving particle’s past history
should be selected as follows:

pbesti(t) =
{
∃xi(t̂) ∈ Pi(t), |Fi(t̂) = mint (Ti(t))

}
,

i = 1, 2, . . . , N (15)

where Pi(t) = {xi(1),xi(2), . . . ,xi(t)} is a set of
all past positions of the ith particle and Ti(t) =
{Fi(1),Fi(2), . . . ,Fi(t)} denotes the corresponding modified
objective values for the past history of the ith particle, both
extracted from the temporal knowledge section of the belief
space.

2) sbest Selection: In order to select the swarm best parti-
cle, situational knowledge is adopted. The information stored in
the situational knowledge section of the belief space is simply
copied into the swarm best particles

sbesti(t) = X̂i(t), i = 1, 2, . . . , P (16)

where P is the number of swarms and X̂i(t) is the representa-
tion of the situational knowledge of the belief space.

3) gbest Selection: We use the spatial knowledge stored in
the belief space to compute gbest(t) at each iteration. The
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global best particle is found as follows:

gbest(t) = {∃xj(t) ∈ P(t), 1 ≤ j ≤ N |Fj(t) = min (F(t))}
(17)

where P(t) = {x1(t),x2(t), . . . ,xN (t)} is the entire
population of particles at time t and F(t) =
{F1(t),F2(t), . . . ,FN (t)} is a set consisting of the modified
objective function values for all particles at time t.

4) Interswarm Communication Strategy: After some prede-
fined iterations, Tmigration, swarms will perform information
exchange. Each swarm prepares a list of sending particles to
be sent to the next swarm and also assembles a list of replace-
ment particles to be replaced by particles coming from other
swarms. This communication strategy is a modified version of
the algorithm adopted in [46]. We use the information stored in
the belief space to perform communication among swarms. To
do so, each swarm prepares two lists of particles, i.e., Si and Ri,
i = 1, 2, . . . , P , where P is the fixed number of swarms defined
in (4). Si is the list of particles in the ith swarm to be sent to
the next swarm, and Ri is the list of particles in the ith swarm
to be replaced by particles coming from another swarm. The
interswarm communication strategy is based upon the particles’
locations in the swarm and their modified objective value which
is stored in the belief space. The sending list for the swarm is
prepared in the following order.

1) The highest priority in the selection of particles is given
to a particle that has the least average Hamming distance
from others. The average Hamming distance between
every particle and all other particles will be computed.
To do so, the Hamming distance between two particles is
calculated as a sum of absolute differences between the
positions of two particles in different dimensions. The
particle with the lowest value of the average Hamming
distance will then be selected as the representative of the
swarm.

2) The second priority is given to the closest particles to
the representative particle whose modified objective value
stored in the spatial knowledge of the belief space is
greater than that of the representative.

3) The third priority is given to the closest particles to the
representative particle whose modified objective value
extracted from the belief space is less than that of the
representative.

Note that depending on the predefined fixed value for the
allowable number of the sending list, Nmigration, the sending
list will be filled in each swarm using the aforementioned
priorities.

There will also be a replacement list that each swarm pre-
pares, based upon the similar positional information of particles
in the swarm. When swarms are approaching local optima,
many particles’ locations are the same. Each swarm will re-
move this excess information through its replacement list. The
replacement list in each swarm is assembled in the following
order.

1) The first priority is given to the particles with identical
decision space information in the order of their modified

objective values extracted from the belief space, with the
least modified objective values being replaced first.

2) The second and last priority is given to the particles with
the lowest modified objective values if all particles of the
first priority have already been placed in the replacement
list.

This information exchange among swarms happens in a ring
sequential order between each pair of swarms. Each swarm
accepts the sending list from the other swarm and will replace
it with its own replacement list.

IV. COMPARATIVE STUDY

In this section, the performance of the cultural CPSO is eval-
uated against those of the selected state-of-the-art constrained
optimization heuristics.

A. Parameter Settings

The parameters of the cultural CPSO are set as follows.
The tolerance for equality constraints in (8), i.e., δ, is set as
0.0001, as suggested in the literature. In the flight mechanism,
the momentum, w, is randomly selected from the uniform
distribution of (0.5, 1), and the personal, swarm, and global
accelerations, i.e., c1, c2, and c3, are all selected as 1.5. Please
note that the selection of parameters of the flight mechanism,
such as momentum and accelerations, follows the same guide-
lines depicted in [38]. The population size is fixed at 100
particles. The maximum velocity for the particles in a specific
dimension, vdmax, is set at half of the range of the particle’s
position in that dimension

vdmax =
(
xd
max − xd

min

)
/2. (18)

The rate for information exchange among swarms affects
how much swarms communicate with each other. A higher rate
corresponds to more communication and better overall perfor-
mance of the algorithm, but it does incur higher computational
complexity, while a lower rate imposes less computational
complexity and results in relatively poorer performance. The
heuristic choice is set at 30%. The allowable number of migrat-
ing particles among swarms is set as 5% of the population size,
which is Nmigration = 0.05N = 5.

B. Benchmark Test Functions

The proposed cultural CPSO has been tested on 24 bench-
mark functions [49] to verify its performance. The characteris-
tics on these test functions are summarized in Table I. These
problems include various types of objective functions such
as linear, nonlinear, quadratic, cubic, and polynomial. These
benchmark problems vary in number of decision variables, n,
i.e., between 2 and 24, and number of constraints, i.e., between
1 and 38. In this table, ρ is the estimated ratio of the feasible
region over the search space, which varies by as low as 0.0000%
and as high as 99.9971%. The numbers of different types of
constraints are also shown for each test function: the number
of linear inequality (LI), the number of nonlinear inequality
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TABLE I
SUMMARY OF 24 BENCHMARK TEST FUNCTIONS

(NI), the number of linear equality, and the number of nonlinear
equality. In this table, a is the number of active constraints at the
known optimal solution, x̃, and f(x̃) is the objective function
of the known optimal solution [49].

C. Simulation Results

The experiments reported in this paper are performed on a
computer with 1.66-GHz dual-core processor and 1-GB RAM
operating on Windows XP Professional. The programs are writ-
ten in Matlab. We performed extensive experiments on all 24
benchmark test functions based upon the comparison methods
suggested in [49]. For three different function evaluations (FEs)
of 5000, 50 000, and 500 0000, the objective function error
values, f(x)− f(x̃), are found, while f(x̃) is the best known
solution [49] presented in the rightmost column in Table I.
Notice that when f(x)− f(x̃) < 1e− 10, the final error is
considered as zero. For each benchmark test problem, a total
of 25 independent runs are performed.

The statistical measures, including the best, median, worst,
mean, and standard deviations, are then computed. These re-
sults are tabulated in Table II. For the best, median, and worst
solutions, the number of constraints that cannot satisfy the
feasibility condition is found and shown as an integer inside
the parenthesis after the best, median, and worst solutions,

respectively, in this table. The parameter c shows three different
integers demonstrating the number of constraints, including the
equality and inequality ones that are violated by more than
1, 0.01 and 0.0001, respectively, for the median solution. The
parameter v indicates the average value of the violations of all
constraints at the median solution, as defined in [49].

For each independent run, the number of FEs to locate
a solution satisfying f(x)− f(x̃) < 0.0001 is recorded. For
each benchmark function, the statistical measures of these 25
runs, including the best, median, worst, mean, and standard
deviations, are then computed. These results are shown in
Table III. In the same table, feasible rate, success rate, and
success performance are also calculated for each test function.
Feasible rate is a ratio of feasible runs over total runs, where
feasible run is defined as a run with maximum FEs of 500 000
during which at least one feasible solution is found. Success
rate is a ratio of successful runs over total runs, where success-
ful run is defined as a run during which the algorithm finds a
feasible solution, x, satisfying f(x)− f(x̃) < 0.0001. Success
performance is defined as [49]

success performance

=
mean{FEs for successful runs} × (no. of total runs)

no. of successful runs
.

(19)
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TABLE II
ERROR VALUES FOR DIFFERENT FES ON TEST PROBLEMS g01–g24
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TABLE II
(Continued.) ERROR VALUES FOR DIFFERENT FES ON TEST PROBLEMS g01–g24

TABLE III
NUMBER OF FES TO ACHIEVE THE FIXED ACCURACY LEVEL (f(x)− f(x̃) < 0.0001), SUCCESS RATE, FEASIBILITY RATE,

AND SUCCESS PERFORMANCE
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TABLE IV
SUMMARY OF STATISTICAL RESULTS FOUND BY CULTURAL CPSO (IS DENOTED FOR INFEASIBLE SOLUTION)

These tables show that feasible solutions can be reliably
found within the maximum FEs for all benchmark problems
except for function g20. The final solutions of all benchmark
problems can be identified with an error of less than 0.0001
from the optimal solution within the maximum FEs except
for functions g20 and g22. Most benchmark functions find
the optimal solution with an error of less than 0.0001 before
50 000 FEs except for functions g02, g17, g20, g22, and g23.
It can also be observed that the cultural CPSO has 100%
feasible rate for all benchmark problems except for function
g20, and 100% success rate for all benchmark problems except
for functions g02, g10, g17, g21, and g22. However, we should
note that for functions g10, g17, and g21, the success rates are
fairly high at 96%, 92%, and 96%, respectively. A summary
of the statistical results for the best, median, mean, worst, and
standard deviations obtained by the cultural CPSO over 25
independent runs is shown in Table IV. As can be seen in this
table, except for function g20, we have found feasible solutions
for all other benchmark problems.

D. Convergence Graphs

For the median run of each test function with FEs of 500 000,
two semilog graphs are plotted for each test function. The first
graph is log10[f(x)− f(x̃)] versus FEs, while f(x̃) is given
in the rightmost column of Table I, and f(x) is the objective
value for the best solution at specific FEs. The second graph
is log10(v) versus FEs, where v is the average value of the
constraint violations at specific FEs. For these two graphs,
points which satisfy f(x)− f(x̃) ≤ 0 are not plotted, since
the logarithm for zero or negative numbers cannot be com-
puted. Figs. 5–8 show these two graphs for all 24 benchmark
problems.

E. Complexity Analysis

In Table V, the algorithm’s complexity corresponding to
all 24 benchmark problems is shown. The computed times
in seconds for complexity are T1, T2, and (T2− T1)/T1,
where T1 represents the average computing time of 10 000
evaluations for each test problem and T2 is the average of
10 000 evaluations for all benchmark problems [49].

Furthermore, in this section, the average time for 1000 FEs
had been found for some test functions to examine the memory
access and processing time and its relation with the problems.
We have selected eight problems based on their FEs that they
reach to the optimum with an error of less than 0.0001. From
Table III, we can see that g08, g12, and g11 will reach to the
optimum point fairly early at FEs of 2302, 3289, and 4589,
respectively, showing that g08, g12, and g11 are fairly easier
than the others in the set of 24 benchmark problems. On the
other hand, g17, g23, and g02 will reach to the optimum point
fairly late at FEs of 158 367, 62 091, and 56 392, respectively,
showing that g17, g23, and g02 are harder than the others
in the set of 24 benchmark problems. By choosing these six
benchmark functions, we compare the average time for 1000
FEs. These values are summarized in Table VI. As it is shown,
the processing time for 1000 FEs for the easier problems is, in
general, less than that for the more difficult problems.

F. Performance Comparison

Furthermore, we have compared the performance of the cul-
tural CPSO with nine state-of-the-art constrained optimization
heuristics in terms of two performance indicators, namely,
feasible rate and success rate. The selected high-performance
algorithms are PSO [50], DMS-PSO [51], ε_DE [52], GDE
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Fig. 5. Convergence graphs for problems g01–g06. (a) Function error values. (b) Mean constraint violations.

Fig. 6. Convergence graphs for problems g07–g12. (a) Function error values. (b) Mean constraint violations.

Fig. 7. Convergence graphs for problems g13–g18. (a) Function error values. (b) Mean constraint violations.

Fig. 8. Convergence graphs for problems g19–g24. (a) Function error values. (b) Mean constraint violations.
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TABLE V
COMPUTATIONAL COMPLEXITY

TABLE VI
AVERAGE PROCESSING TIME (IN SECONDS) FOR DIFFERENT

BENCHMARK TEST FUNCTIONS FOR 1000 EVALUATIONS

[53], jDE-2 [54], MDE [55], MPDE [56], PCX [57], PESO+
[58], and SaDE [59]. The comparative results are then demon-
strated in Table VII. The average performance for each al-
gorithm is also computed. This table demonstrates that the
cultural CPSO has an average feasible rate of 95.83% on 24
benchmark problems, which places it as the top-performing
algorithm along with DMS-PSO [51], ε_DE [52], and SaDE
[59]. The results in the same table indicate that the proposed
cultural CPSO has an average success rate of 90.00% on
24 benchmark problems, making it the third best performing
algorithm after ε_DE [52] and PCX [57] with 91.67% and
90.17% success rates, respectively. ε_DE [52] is a differential
algorithm adopted to solve constraint problems. The differential
algorithm is a stable population-based search algorithm that is
robust to multimodal problems. The ε_DE improves the behav-
ior of a regular differential algorithm by adopting a gradient-
based mutation that finds feasible points using the gradient of
constraints at an infeasible point [52]. As a result, the ε_DE is
suitable for multimodal problems. PCX [57] is a population-
based algorithm generator that includes systematic plans such
as selection, generation, replacement, and update plans. Each
essential feature of an optimization task is independently de-
signed via these four plans which are suitable for optimization
problems. The generation plan in PCX uses a planar version
of parent-centric recombination operator to produce an off-
spring [57].

G. Sensitivity Analysis

In this subsection, the sensitivity of algorithm performance
with respect to some parameters is briefly assessed. The param-
eters to be tuned in the proposed algorithm are personal acceler-
ation (c1), swarm acceleration (c2), global acceleration (c3), and
the rate for information exchange among swarms (r). Notice
that the allowance number of particles to migrate (Nmigration)
is a fraction of the population size and does not need to be
tuned. The tolerance for equality constraints is considered a
fixed number of 0.0001 to be able to fairly compare our results
with those of other algorithms. The flight momentum is also
randomly selected from a uniform distribution and does not
have a tuning issue, and the maximum velocity of particles in
a specific dimension depends on the particle’s positional range,
which will consequently not be adjusted either.

We have applied sensitivity analysis to a selected set of
benchmark problems by varying one parameter at a time while
the other parameters are set as values discussed in the earlier

sections. Table VIII shows the results of the sensitivity analysis.
For every set of parameters, 25 independent runs are performed.
We have recorded the mean statistical results for feasible
solutions, feasible rate, and success rate, as defined earlier,
for every set of parameters. This table shows that the effect
of varying the acceleration on the algorithm’s performance is
by some extent problem dependent. This makes it difficult to
identify the optimum parameters in order to achieve the best
performance. We suggest the further analysis of this issue and
the implementation of an adaptive dynamic law based upon the
need for exploration or exploitation in the f−V space discussed
in the spatial knowledge of the belief space. This approach is
similar to the one introduced in [38]. This table also shows that
by increasing the rate for information exchange, the success rate
will be greatly improved for all selected benchmark problems.
On the other hand, by decreasing this rate, the success rate gets
deteriorated.

H. Real-World Application Problem

In this subsection, the proposed algorithm is applied on
a real-world application problem. Spring design is a me-
chanical design problem [60] to minimize the weight of a
tension/compression spring, as shown in Fig. 9. There are NI
constraints on minimum deflection, shear stress, surge fre-
quency, and limits on outside diameter and on design variables.
The design variables are mean coil diameter (x1), wire diameter
(x2), and the number of active coils (x3), along with four
inequality constraints. The mathematical formulation of the
problem is as follows:

Minimize : f(x) = (x3 + 2)x1x
2
2 (20)

Subject to : 1− x3
1x3

71785x4
2

≤ 0

4x2
1 − x1x2

12566 (x1x3
2 − x3

1x3)
− 1

5108x2
2

− 1 ≤ 0

1− 140.45x2

x3
1x3

≤ 0

x1 + x2

1.5
− 1 ≤ 0 (21)

with the following limits on variables: 0.25 ≤ x1 ≤ 1.3, 0.05 ≤
x2 ≤ 2.0, and 2 ≤ x3 ≤ 15.

Table IX demonstrates the simulation results for the spring
design problem using the proposed cultural PSO. The setting
of the algorithm is considered as it has been discussed in
Section IV-A. These results are computed after 30 independent
runs have been performed. The decision variable values and
optimized solution are summarized in the table. As can be
observed from the table, the proposed algorithm finds the better
optimum solution compared to the other algorithms.

V. CONCLUSION

In this paper, we have proposed the cultural CPSO, a novel
heuristic to solve constrained optimization problems, which
incorporates the information of objective function and con-
straint violation, to construct a cultural framework consisting
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TABLE VII
COMPARISON OF CULTURAL CPSO WITH STATE-OF-THE-ART METHODS IN TERMS OF FEASIBLE RATE AND SUCCESS RATE

TABLE VIII
SENSITIVITY ANALYSIS WITH RESPECT TO PERSONAL ACCELERATION (c1), SWARM ACCELERATION (c2), GLOBAL ACCELERATION (c3), AND RATE OF

INFORMATION EXCHANGE (R). THE MEAN RESULTS OF FEASIBLE SOLUTIONS, FEASIBLE RATE, AND SUCCESS RATE ARE COMPUTED OVER

25 INDEPENDENT RUNS

of two sections: a multiple-swarm PSO with the ability of inter-
swarm communication as population space and a belief space
including four elements, namely, normative knowledge, spatial

knowledge, situational knowledge, and temporal knowledge.
Each swarm assembles two lists of particles to share with other
swarms based upon the cultural information retrieved from
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Fig. 9. Schema for the spring design problem.

TABLE IX
BEST SOLUTION FOR THE SPRING DESIGN APPLICATION PROBLEM

different sections of the belief space. This cultural-information-
based communication facilitates the algorithm’s performance
on better handling the constraints along with optimizing the
objective function simultaneously. In the proposed algorithm,
the feedbacklike communication channels are to connect the
population and belief spaces to increase the efficiency of the
PSO mechanism in the search process. In system science, a
negative feedback loop is used to stabilize the system and to
tune the output to the desired values, and results in a better
behavior of the closed-loop system compared to that of the
open-loop one. If we look at the problem of optimization as the
output of a system that needs to be optimized and if we consider
the population of particles and its associated knowledge as an
overall system, the behavior of this closed-loop system should
have been improved by applying the feedback-type communi-
cation channels compared to that of the open-loop one, i.e., only
population space.

The cultural CPSO shows competitive results when per-
forming extensive experiments on 24 benchmark test func-
tions. The comparison study with the chosen state-of-the-art
constrained optimization techniques indicates that the cultural
CPSO is able to perform competitively in terms of commonly
used performance metrics, namely, feasible rate and success
rate. Furthermore, sensitivity analysis was performed on the
parameters of the paradigm, which shows that by increasing
the rate of information exchange, the success rate is greatly
improved. We have also applied our proposed algorithm on
a real-world optimization problem, which demonstrates better
performance compared to the other algorithms applied on the
problem. As future work, the proposed framework for single-
objective optimization will be extended into a cultural-based
multiobjective PSO (Cultural-MOPSO) [63]–[65] to exploit its
robust performance under a dynamic environment when fitness
landscape and constraints will change periodically or sporadi-
cally. Additionally, applications of Cultural-MOPSO to medical
diagnosis [66] and structural control [67] will be exploited.
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